

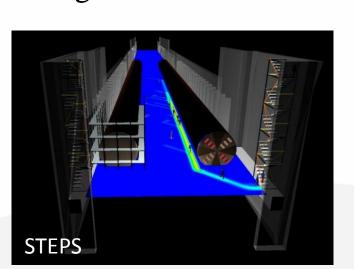
per SICUREZZA INCLUSIVA |

A cura dell'Osservatorio Nazionale sulla Sicurezza e il Soccorso alle Persone con Esigenze Speciali del Corpo Nazionale Vigili del Fuoco

Nuove modalità di approccio alla sicurezza inclusiva con i metodi della Fire Engineering

Senior Lecturer, Department of Fire Safety Engineering, Lund University, Svezia

CONVEGNO INTERNAZIONALE Corpo Nazionale Vigili del Fuoco INTERNATIONAL CONFERENCE
National Fire Service

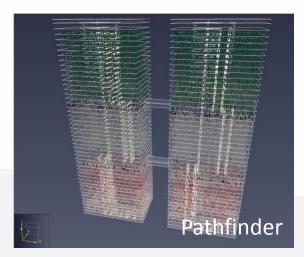

Istituto Superiore Antincendi ROMA Giovedì 5 aprile 2018

Outline

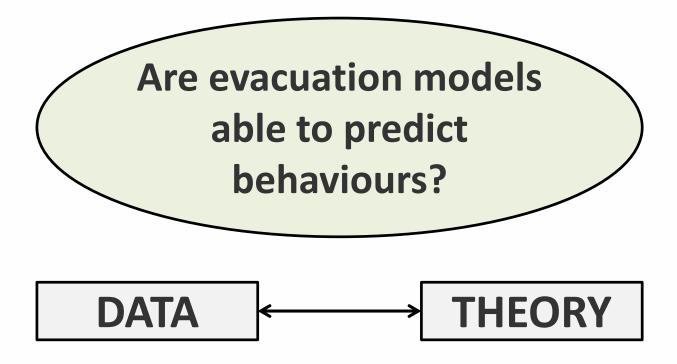
- Evacuation modelling
 - What are evacuation models
 - What results do we get?
 - How can we use them for inclusive fire safety?
- Modelling vulnerable groups
- For which buildings/scenarios can we apply evacuation models?

What are evacuation models?

Computer modelling
(research and commercial)
FSE tools for the representation
of human behaviour and people
movement during fire
emergencies

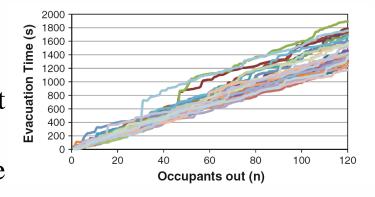


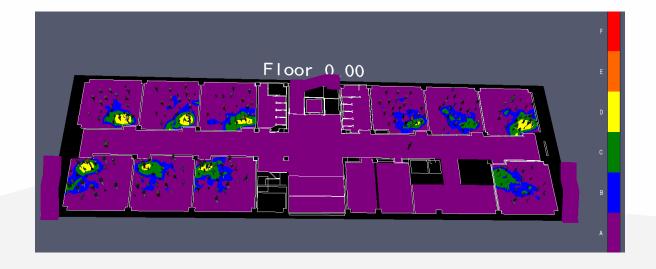
Movement (equation-based/agent-based)


- Hydraulic model in the SFPE handbook,
- Social force model
- Steering model, ecc.

Behaviours (generally agent-based)

- Time-line model (sequence of actions)
- Decision making




What are evacuation models?

What results can we get from evacuation models?

- Total evacuation times
- Occupant-evacuation time curves
- Prediction of congestion levels (comfort and safety) and other emergent behaviours
- Toxicity assessment in case of fire-people interaction (Purser's FED model)

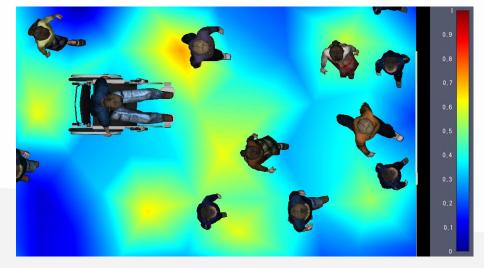
How can we use of evacuation models for inclusive fire safety?

- Fire evacuation design

 Assessment of escape routes (quantity,
 - dimensions, etc.)
- Emergency management
 Evacuation strategies
 Use of egress components

Representing different people types

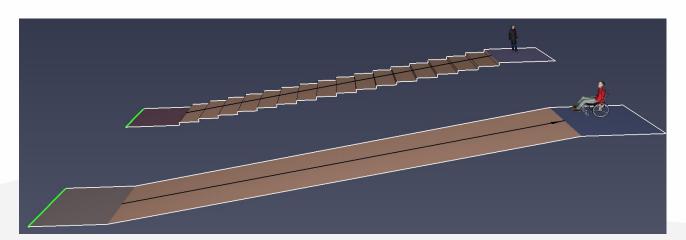
Walking speeds


Example of vulnerable groups: wheelchair users, children, elderly people, etc.

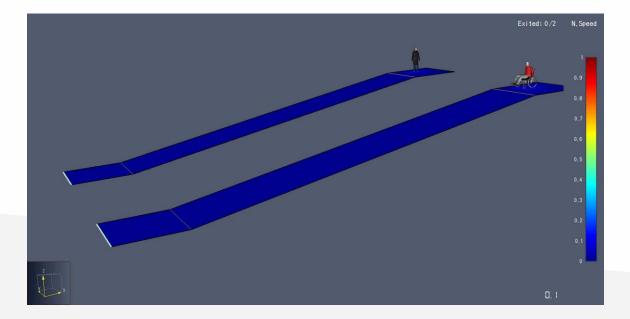
Space usage during egress (safety/comfort)

Needed space

VS


Available space

Representing different people types


Egress abilities
 Self rescue vs assisted evacuation
 Use of egress components

(stairs vs ramps, elevators)

Representing different people types

Egress abilities
 Several people variables can be customized (e.g. walking speeds)

Representing different people types

Assisted evacuation procedures

For which buildings/scenarios can we apply evacuation models?

Examples of scenarios

- Analysis of evacuation procedures of vulnerable groups (both self rescue and assisted)
- Study of refuge floors/areas
- Elevators for evacuation

For which buildings/scenarios can we apply evacuation models?

Examples of building types

- Transportation terminals (e.g. underground)
- High-rise buildings
- Schools
- Health care facilities (hospitals)
- Retirement houses, etc.

For which buildings/scenarios can we apply evacuation models?

Application of evacuation models for buildings with vulnerable populations

NOT ONLY FOR "SPECIAL BUILDINGS"!

Every building fire evacuation design should account for vulnerable populations!

Conclusions

- Evacuation models can be a useful tool to design inclusive safety
- Models allow to represent different behaviours and use of egress components
- Great potential for FSE design

Outline

- Evacuation modelling
 - What are evacuation models
 - What results do we get?
 - How can we use them for inclusive fire safety?
- Modelling vulnerable groups
- For which buildings/scenarios can we apply evacuation models?

Contact information

Enrico Ronchi, PhD enrico.ronchi@brand.lth.se

References

Alonso-Gutierrez, V., & Ronchi, E. (2016). The simulation of assisted evacuation in hospitals. Malaga, Spain: Thunderhead Engineering.

Carattin, E., Lovreglio, R., Ronchi, E., & Nilsson, D. (2016). Affordance-based evaluation of signage design for areas of refuge. In *14th International Conference and Exhibition on Fire Science and Engineering*. Royal Holloway College, University of London, UK: Interscience Communications.

Cuesta, A., Ronchi, E., Gwynne, S. M. V., Kinsey, M. J., Hunt, A. L. E., & Alvear, D. (2016). School egress data: comparing the configuration and validation of five egress modelling tools. *Fire and Materials*. https://doi.org/10.1002/fam.2405

Najmanova, H., & Ronchi, E. (2017). An Experimental Data-Set on Pre-school Children Evacuation. *Fire Technology*, 53(4), 1509–1533. https://doi.org/10.1007/s10694-016-0643-x

Ronchi, E., & Nilsson, D. (2016). Basic Concepts and Modelling Methods. In A. Cuesta, O. Abreu, & D. Alvear (Eds.), *Evacuation Modeling Trends* (pp. 1–23). Cham: Springer International Publishing. Retrieved from http://link.springer.com/10.1007/978-3-319-20708-7_1

Ronchi, E., & Kinsey, M. (2011). Evacuation models of the future: Insights from an online survey on user's experiences and needs (pp. 145–155). Presented at the Advanced Research Workshop Evacuation and Human Behaviour in Emergency Situations EVAC11, Santander, Spain: Capote, J. et al.

Ronchi, E., & Nilsson, D. (2014). Assessment of total evacuation systems for tall buildings. New York: Springer.

Ronchi, E., & Nilsson, D. (2014). Modelling total evacuation strategies for high-rise buildings. *Building Simulation*, 7(1), 73–87. https://doi.org/10.1007/s12273-013-0132-9

Ronchi, E., Reneke, P. A., & Peacock, R. D. (2014). A Method for the Analysis of Behavioural Uncertainty in Evacuation Modelling. *Fire Technology*, 50(6), 1545–1571. https://doi.org/10.1007/s10694-013-0352-7