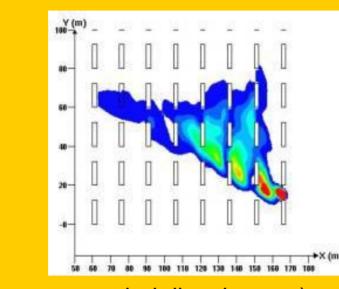
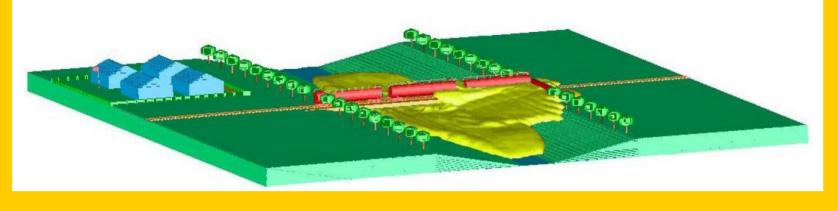

# Toxic Gas Dispersion Simulations with the CFD Code FLACS


Prankul Middha<sup>1</sup> and Filippo Gavelli<sup>2</sup>

GexCon AS, Bergen, Norway
GexCon US, Bethesda, MD, USA

#### WHY USED CFD FOR DISPERSION SIMULATIONS?

■ Large influence of geometry on flow phenomena and hazards resulting from releases






Gas dispersion (same release rate, gas type, wind direction, etc)

- Analytical models generally neglect geometry and have other potentially unphysical assumptions such as radial symmetry of gas dispersion around release location
- Computational Fluid Dynamics (CFD) simulations can account for details such as obstacles and terrain features and effect of wind direction (gas may travel upwind)





#### FLACS - CFD MODEL BASICS

- Specifically developed for process safety studies
- **Full 3D Cartesian Navier-Stokes flow solver**
- Distributed porosity concept for small, sub-grid scale obstacles
- Intelligent sub-grid models
- Possible to model atmospheric boundary layers
- Possible to define atmospheric stability classes
- Thoroughly validated against e.g. large-scale Phase3B dispersion experiments and full LNG MEP database
- Widely accepted by authorities worldwide

It is possible within FLACS to add/define:

- **Geometry and buildings**
- Vegetation and terrain contours
- Wind profiles, fluctuating wind
- Gas or liquids, single components or mixtures



Guidelines have been developed (e.g. grid refinement near leak) based on validation

## **VALIDATION EXERCISE**

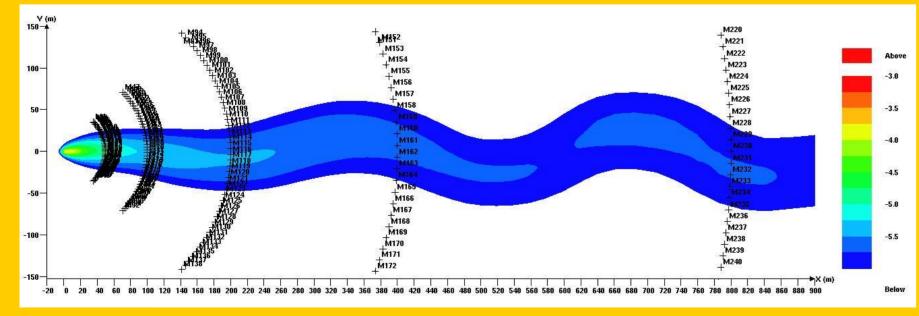
Brief description (Details in Hanna et al., 2004)

Kit Fox 52 tests (Hanna and Chang 2001)

- 1.1-4.3 kg/s CO<sub>2</sub> from a pool 1.5m x 1.5m
- 0.8-4.5 m/s wind; D, E, F neutral to stable classes

Prairie Grass 37 tests (Barad 1958)

- 40-100 g/s SO<sub>2</sub>; 1.5-9 m/s wind; A,B,C,D,E,F stability classes MUST 43 tests (Biltoft 2001)
- 6 g/s propylene
- 1.0-6.8 m/s wind; generally stable/neutral conditions

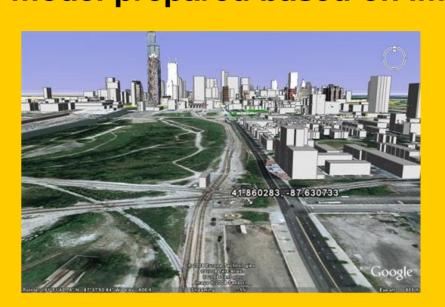

EMU L-shaped building (Hall 1997)

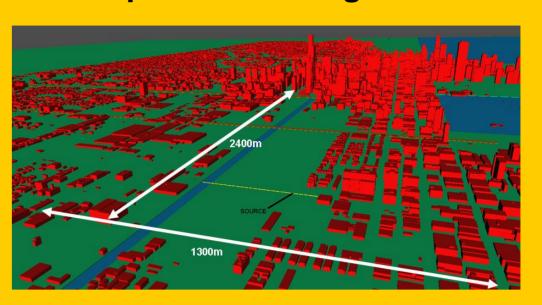
■ Wind tunnel test

### Simulation challenges

- Concentrations to be predicted 100 to 800m downstream of leak
- Relatively small leaks, interesting concentrations in ppm range; Duration > 1000 s
- Using normal FLACS guidelines (with finer grid near leak) would require months of simulation time
- To be of practical interest, calculations should take less than a night (or 1-2 days)
- ⇒ Revised guidelines:
- Only a moderate or no grid refinement near the leak
- Coarse grid applied horizontally, somewhat finer vertically
- Stretching of grid outside core area, short distance to external boundaries

Example of results and evaluation





Prariie Grass Simulations, sensors in arcs at 50, 200, 200, 400 and 800 m

- Results evaluated statistically using fractional bias, geometric mean bias, geometric variances and fraction of observations within a factor of two.
- General underprediction tendency of about 20 %
- About 86 % of the predictions are within a factor of two of the observations
- These results are all well within the range of acceptable model performance

#### CHICAGO SIMULATIONS

- Hypothetical chlorine release, D=10 cm hole: 225 kg/s for 300s (total release 67.5 ton) 2.4 km from downtown Chicago; 3 m/s wind (F stability). Details in Hanna et al. (2009).
- Geometry model prepared based on imported .shp files from Argonne NL





Scenario 2: Wind from E

Plume can move upwind

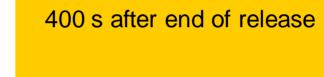
when reaching river

Dense chlorine plume spreads

Lower buildings than scenario 1 (less

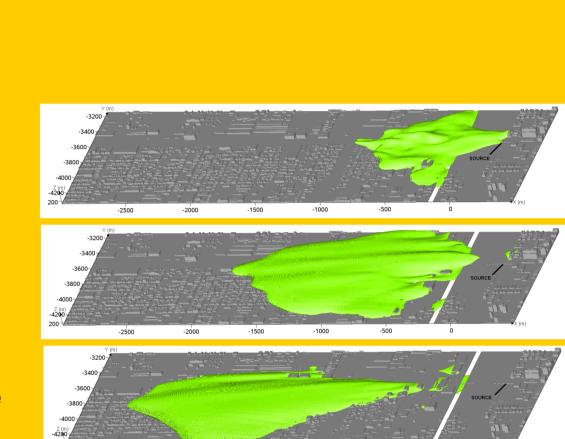
dramatic effects e.g. vertical mixing)

- Two different scenarios: Wind from South (towards downtown) and Wind from East
- Grid used: 6m x 6m x 2m in near field, gradual stretching further away


Results

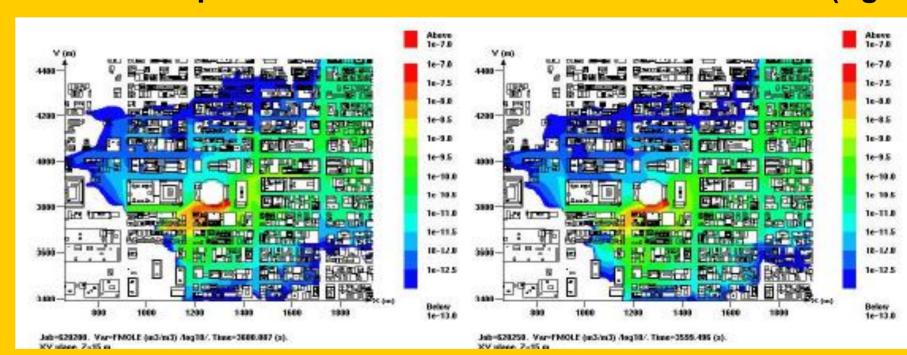
Scenario 1: Wind from S (main observations)

- Dense gas behaviour clearly seen laterally
- Dispersion on flat terrain similar to integral model predictions
- Tall buildings downtown lead to vertical mixing and quick dilution
- Gas pushed in between the buildings near source may remain for a long time

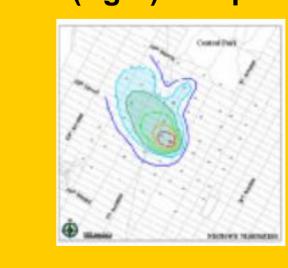

100 ppmv contour plotted

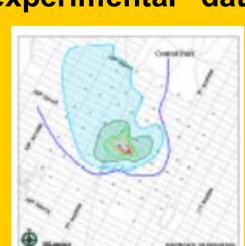





1000 s after end of release

1500 s after end of release





### **MANHATTAN (NEW YORK CITY) SIMULATIONS**

- Wind and tracer gas release simulations in downtown Manhattan (Department of Homeland security, USA); GexCon among 6 CFD modellers
- Geometry database imported using Vexcel, 45000+ building features covering 11.5 km²
- Details in Hanna et al (2006).
- Full lower Manhattan area simulated (10 km x 7.5 km x 1 km)
- Grid resolution in central areas 10m x 10m x 5m, stretched towards boundaries (total 2.7 M)
- FLACS porosity concept significant advantage compared to other tools
- Simulation details:
  - Step 1: Initialize global wind field on coarse grid
  - Step 2: Develop local field around buildings and street canyons by transferring to finer grid, solution "stored in library", starting point for different calculations
  - Flow field is frozen, only dispersion of gas is solved tracer gas calculations assuming constant wind field. Speed of calculations "faster than real time" (right figure below)



■ Tracer gas calculations (right) compared with "experimental" data (left) from real releases





## **OTHER EXAMPLES**

- Simulations done to "investigate" the chlorine release accident from a railcar at Festus, Missouri, USA. Pictures shown above left (Hanna et al 2009)
- Several studies with releases from stacks in factories or H<sub>2</sub>S releases from "sour" gas

### REFERENCES

- 1. Barad, M.L. (Ed.), Geophys. Res. Paper 59, Vols. I & II, AFCRF-TR-58-235 (1958).
- 2. Biltoft, C.A., DPG Doc WDTC-FR-01-121 (2001).
- 3. Hall, R.C. (Ed.), WS Atkins Doc WSA/AM5017/R7 (1997).
- 4. Hanna, S.R., Brown, M.J., Camelli, F.E., et al., Bull. Am. Met. Soc., 87:1713-1726 (2006).
- 5. Hanna, S.R., Chang, J.C., *Atm. Env.*, 35:2231-2242 (2001)
- 6. Hanna, S.R., Hansen, O.R., Dhamrmavaram, S., *Atm. Env.*, 38:4675-4687 (2004).
- 7. Hanna, S.R., Hansen, O.R., Ichard, M., et al., *Atm. Env.*, 43: 262-270 (2009).